Uniform bounds and exponential time decay results for the Vlasov-Poisson-Fokker-Planck system
نویسنده
چکیده
We consider the non-linear VPFP system with a coulombian repulsive interaction potential and a generic confining potential in space dimension d ≥ 3. Using spectral and kinetic methods we prove the existence and uniqueness of a mild solution with bounds uniform in time in weighted spaces, and for small total charge we find an explicit exponential rate of convergence toward the equilibrium in terms of the Witten Laplacian associated to the linear equation. Résumé: On considère le système de Vlasov-Poisson-Fokker-Planck avec un potentiel Coulombien répulsif et un potentiel confinant générique en dimension d ≥ 3. Avec des méthodes spectrales et cinétiques on prouve l’existence et l’unicité d’une solution douce dans des espaces à poids, bornée uniformément en temps, et pour petite charge totale on trouve un taux de retour exponentiel explicite vers l’équilibre en fonction du Laplacien de Witten associé à l’équation linéaire.
منابع مشابه
Time-periodic Solutions of the Vlasov-poisson-fokker-planck System
In this note it is shown that the Vlasov-Poisson-Fokker-Planck system in the three-dimensional whole space driven by a time-periodic background profile near a positive constant state admits a time-periodic small-amplitude solution with the same period. The proof follows by the Serrin’s method on the basis of the exponential time-decay property of the linearized system in the case of the constan...
متن کاملExponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations
We consider homogeneous solutions of the Vlasov—Fokker—Planck equation in plasma theory proving that they reach the equilibrium with a time exponential rate in various norms. By Csiszar—Kullback inequality, strong ̧1-convergence is a consequence of the ‘sharp’ exponential decay of relative entropy and relative Fisher information. To prove exponential strong decay in Sobolev spaces Hk, k*0, we ta...
متن کاملOn Long Time Asymptotics of the Vlasov-fokker-planck Equation and of the Vlasov-poisson-fokker-planck System with Coulombic and Newtonian Potentials
We prove that the solution of the Vlasov-Fokker-Planck equation converges to the unique stationary solution with same mass as time tends to infinity. The same result holds in the repulsive coulombic case for the Vlasov-Poisson-Fokker-Planck system; the newtonian attractive case is also studied. We establish positive and negative answers to the question of existence of a stationary solution for ...
متن کاملSmoothing Effect for the Non-linear Vlasov-poisson-fokker-planck System
We study a smoothing effect of a non-linear degenerate parabolic problem, the Vlasov-Poisson-Fokker-Planck system, in three dimensions. We prove that a solution gives rise actually to very smooth macroscopic density and force field for positive time. This is obtained by analyzing the effect of the Fokker-Planck kernel on the force term in the Vlasov equation and using classical convolution ineq...
متن کاملDiffusion Limit of the Vlasov-poisson-fokker-planck System
Abstract. We study the diffusion limit of the Vlasov-Poisson-Fokker-Planck System. Here, we generalize the local in time results and the two dimensional results of Poupaud-Soler [F. Poupaud and J. Soler, Math. Models Methods Appl. Sci., 10(7), 1027-1045, 2000] and Goudon [T. Goudon, Math. Models Methods Appl. Sci., 15(5), 737-752, 2005] to the case of several space dimensions. Renormalization t...
متن کامل